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 Deep learning greatly empowers Inertial Measurement Unit 
(IMU) sensors for a wide range of sensing applications.  
Most existing works require substantial amounts of well-
curated labeled data to train IMU-based sensing models, 

which incurs high annotation and training costs. Compared with labeled 
data, unlabeled IMU data are abundant and easily accessible. This article 
presents a novel representation learning model that can make use of 
unlabeled IMU data and extract generalized rather than task-specific 
features. With the representations learned via our model, task-specific 
models trained with limited labeled samples can achieve superior 
performances in typical IMU sensing applications, such as Human 
Activity Recognition (HAR).

CONVENTIONAL IMU SENSING
Wearable devices have played a critical role 
in a wide range of applications, including 
human activity recognition [1][2], human-
computer interaction [3], localization 
and tracking [4], etc. Many of them rely 
heavily on data from Inertial Measurement 
Unit (IMU) sensors (i.e., accelerometer, 
gyroscope, and magnetometer), which are 
widely used in personal mobile devices,  
such as smartphones and smartwatches.

Due to the rapid development of deep 
learning, many works adopt deep neural 
networks to process IMU data [1][2]. 
Compared with manual feature engineering, 
deep learning algorithms can extract more 
effective features and gain significant 
performance improvements in inference. 
Most existing works [2][5], however, rely 
heavily on supervised learning processes, in 
which substantial amounts of labeled IMU 
data are required to train sensing models. 
The requirement of large, labeled data 
hinders their adoption in practice for two 
reasons. First, labeled IMU data are scarce 
because it is costly and time-consuming to 
collect sufficient labeled IMU samples in 
real-world settings. Second, the diversity 
in mobile devices, usage patterns, and 
environments results in the need for labeled Ph
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data with various combinations of phone 
models, users, and usage scenarios to attain 
generalizable models.

CAN UNLABELED IMU DATA HELP?
Compared with labeled data, unlabeled IMU 
data are abundant and easily accessible. 
In particular, unlabeled data can be easily 
collected from a variety of wearable devices, 
usage patterns, and scenarios. Therefore, to 
address the challenge of labeled data scarcity, 
we propose LIMU-BERT, which leverages 
massive unlabeled data and accordingly 
extracts general features through the 
self-supervised training technique. After 
the representations are learned, multiple 
task-specific inference models can thus 
be trained with a small amount of labeled 
IMU samples. The key rationale is to learn 
the generalizable representations from the 
abundant unlabeled IMU data instead of 
scarce labeled data. 

What general features are desired? After 
scrutinizing the characteristics of IMU 
data, we focus on two types of features: 
distributions of individual measurements 
of IMU sensors, and temporal relations in 
continuous measurements. The correlation 
of IMU readings on three axes gives infor- 
mation about the attitude of the device, 
which is an important feature of the usage 
patterns. For example, the readings of 
the accelerometer and gyroscope become 
dramatically larger if the user transitions to 
walking from standing still. The three-axis 
components of the accelerometer correlate 
differently when the device orientation 
varies. As a typical time-series data, temporal 
relations within sensory data give further 
information about user behaviors.

How to extract those general features? 
Inspired by the emerging self-supervised 
techniques in natural language processing, 
we borrow the key framework of BERT 
[6] to process unlabeled IMU data and 
accordingly extract generalizable features. 
BERT designs two novel self-supervised 
training methods to learn the bidirectional 
language representations from the unlabeled 
text. However, intended for natural language 
data processing, the original BERT lacks 
methodology in processing IMU data, e.g., 
the multi-modality problem of various 
IMU sensor readings. We thus devise a 
variety of techniques including data fusion 
and normalization, effective training 
method, and structure optimization, and 
embeds them into the BERT framework for 
improved efficacy and efficiency in IMU 
sensing applications.

LIMU-BERT DESIGN
The overview of our framework is presented 
in Figure 1, which consists of self-supervised 
and supervised learning phases. There are 
three major components in our framework, 
including LIMU-BERT, decoder, and classifier. 
The LIMU-BERT takes the unlabeled IMU data  

as input and outputs high-level representa- 
tions or features. The decoder reconstructs the 
unlabeled data based on the learned features. 
The classifier trained with a small number of 
labeled representations aims to accomplish a 
task-specific application, such as HAR.

1. Self-supervised learning. In this phase, 
we mask partial readings of unlabeled 
samples and feed them into LIMU-BERT. 
The LIMU-BERT and the decoder jointly 
predict the original values of masked 
readings by learning the temporal relations 
among IMU data. The objective of the 
self-supervised learning process is to fully 
utilize a large amount of unlabeled data and 
accordingly extract general features.

2. Supervised learning. Next, we transfer 
the LIMU-BERT model and connect it with 
a classifier. In this phase, all parameters of 
the LIMU-BERT are frozen and only the 
classifier is trained with limited labeled 
representations that have been processed by 
the LIMU-BERT. At the run time after the 
supervised learning, the LIMU-BERT and 
classifier are deployed together to estimate 
the task-specific results for IMU sensor data.

Fusion and Normalization
IMU sensors have different distributions, 
and such differences would affect the model 
performance based on our experiments. 
Therefore, the sensor readings need to be 
properly normalized. Common normalization 
methods, e.g., min-max or mean-variance 
normalization, and loss distribution infor- 
mation can negatively affect the quality of 
the general representations. To this end, we 
design a simple but effective normalization 
method on IMU readings to narrow the 
range differences and not severely alter 
their distributions. We divide accelerometer 
readings by gravity constant and keep the 
distribution of gyroscope readings.

A critical characteristic of IMU sensors 
is that the number of features is small (e.g., 
six). To extend the dimension of features 
and fuse IMU sensors, we project the 
normalized sensor data into a higher space 
by multiplying input data with a matrix 
with a high dimension. Such projection is 
implemented by a linear layer. Next, LIMU-
BERT leverages Layer Normalization [7] to 
normalize the fused features corresponding 
and dynamically normalize implicit features. 

Learning Representations
Both distributions of individual readings 
and temporal relations among continuous 
readings are important features. After 

analyzing the characteristics of IMU data in 
BERT, we find the Mask Language Model 
(MLM) task is the desired training approach, 
which randomly masks subsequences of the 
input readings, and the model is trained to 
predict the original readings.

Since the nature of human mobility leads 
to similar IMU sensor data across adjacent 
readings, the model may easily degrade to 
reconstruct the masked readings by mirroring 
neighboring readings if only the one-sample 
subsequences are masked. Therefore, we 
adopt a Span Masking mechanism [8] to 
mask longer subsequences, whose lengths 
are sampled from a geometric distribution.

Lightweight Model
Different from BERT, LIMU-BERT must be 
lightweight enough to run on mobile devices. 
Thus, we adopt a much smaller sampling 
rate (i.e., 20 Hz) compared with the existing 
works [1][2], and accordingly decrease the 
length of the input IMU sequences and 
reduce model size. The representations 
dimension of LIMU-BERT is also smaller 
than that of the original BERT (e.g., 1024).

LIMU-BERT adopts a cross-layer para- 
meter sharing mechanism [9] to improve 
parameter efficiency, which reuses the 
parts of model parameters and reduces the 
number of total parameters significantly. 
We treat the MLM task as a regression task 

rather than a classification task because the 
IMU features are continuous variables. The 
regression model can avoid a heavy output 
layer and simplify the decoder considerably.

Training Workflow
Putting together all of the designs above, the 
detailed workflow of the self-supervised pro-
cess is illustrated in Figure 2. The normalized 
data are masked before being fed into LIMU-
BERT and the first projection and norm 
component together implement the sensor 
fusion and normalization design. All normal-
ization components represent layer normaliza-
tion. The MultiAttn is a self-attention layer 
[10] with multiple attention heads and the 
Proj represents a fully connected layer, and the 
FeedForward consists of two fully connected 
layers. The decoder reconstructs the original 
values of the masked IMU sequences with the 
representations generated by LIMU-BERT. 
Finally, the Mean Square Error (MSE) function 
is adopted to compute the recon-struction loss 
and train the models.

After the LIMU-BERT is trained with 
unlabeled data, it can be utilized to generate 
representations for labeled IMU data. Based 
on the learned representations and their 
corresponding labels, we can design task-
specific models with supervised training. 
In our framework, we design a lightweight 
classifier with Gated Recurrent Unit (GRU).

FIGURE 1. Framework overview. FIGURE 2. Self-supervised training workflow.

FIGURE 3. Accuracy comparison on HAR at different labeling rates.

FIGURE 4. Representation visualization.
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RESULTS
We implement LIMU-BERT and GRU 
classifiers with PyTorch and quantitatively 
evaluate them with four widely used open 
IMU datasets, i.e., HAR [11], UCI [12], 
Motion [13], and Shoaib [14]. We randomly 
divide each dataset into training (80%), 
validation (10%), and test (10%) sets. The 
training set is further divided into 1% as 
labeled set and 99% as unlabeled set. The 
ratio of the number of samples in labeled set 
to that in training set is called the labeling 
rate. We choose two typical IMU sensing 
applications: Human Activity Recognition 
(HAR) and Device Placement Classification 
(DPC). The models are trained to recognize 
human activities and the on-body placements 
with IMU data. As both two applications are 
classification tasks, we adopt accuracy and 
macro F-score for performance comparison.

Figure 3 depicts the comparative perform- 
ances of our model (LIMU-GRU) and other 
baseline models in HAR application. The 
results show that LIMU-GRU consistently 
outperforms the baseline in all cases. The 
performance gaps between LIMU-GRU and 
other models are higher when the labeling 
rate is smaller. And LIMU-GRU also achieves 
outstanding performance in the DPC appli-
cation1. In summary, the performance gain 
of LIMU-GRU is significant, thanks to the 
effective and generalizable features extracted 
by LIMU-BERT.

To understand the effectiveness of the 
representations learned by LIMU-BERT, 
we visualize the learned high-dimensional 
representations in 2D space. The clusters 
show high correlations among the learned 
representations in all datasets. It is obvious 
to see that samples belonging to the same 
activity class exhibit a high clustering effect, 
which is highly beneficial for the down- 
stream classification models.

MOVING FORWARD
Further experiments show that the perfor- 
mance of LIMU-BERT slightly degrades 
when transferring across datasets. One main 
reason is that the four datasets are collected 
with diverse devices, placements, users, 
and environments. The diversities cause the 
domain shifts among the datasets and affect 
the generalizability of learned representations. 
To mitigate the impact of domain shifts and 

extract more general features, LIMU-BERT 
might be further improved by techniques 
like data augmentation [15]. Other future 
works include the investigation of how the 
representations learned by LIMU-BERT  
may facilitate other mobile applications,  
e.g., indoor localization or device 
orientation estimation.

SUMMARY
In this paper, we present a lite BERT-like 
representation learning model for mobile 
IMU sensor data, which makes use of 
unlabeled data and accordingly extracts 
generalizable features instead of task-specific 
features. Extensive experimental evaluation 
demonstrates that the learned representations 
by LIMU-BERT can boost the performances 
of downstream models significantly with 
few labeled samples. With LIMU-BERT, the 
labeling efforts in real IMU-based sensing 
applications can be greatly reduced. n
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