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Abstract—Modern power grids are undergoing significant
changes driven by information and communication technologies
(ICTs), and evolving into smart grids with higher efficiency and
lower operation cost. Using ICTs, however, comes with an in-
evitable side effect that makes the power system more vulnerable
to cyber attacks. In this paper, we propose a self-supervised
learning-based framework to detect and identify various types of
cyber attacks. Different from existing approaches, the proposed
framework does not rely on large amounts of well-curated labeled
data but makes use of the massive unlabeled data in the wild
which are easily accessible. Specifically, the proposed framework
adopts the BERT model from the natural language processing
domain and learns generalizable and effective representations
from the unlabeled sensing data, which capture the distinctive
patterns of different attacks. Using the learned representations,
together with a very small amount of labeled data, we can train
a task-specific classifier to detect various types of cyber attacks.
Experiment results in a 3-area power grid system with 37 buses
demonstrate the superior performance of our framework over
existing approaches, especially when a very limited amount of
labeled data are available. We believe such a framework can be
easily adopted to detect a variety of cyber attacks in other power
grid scenarios.

I. INTRODUCTION

Smart grid has been equipped with networks of sensors and
generators allowing two-way communication within the sys-
tem with information and communication technologies (ICTs),
which can help the operators manage a larger scale area of
power distribution [1]. This feature, however, also makes the
power system more vulnerable to cyber attacks, e.g., false data
injection (FDI) attack [2] and time delay (TD) attack [3]. The
purpose of cyber attacks is mainly to cause drastic frequency
passivity and finally crash the whole system [4].

Within the power grids, automatic generation control (AGC)
is one of the most important systems but also vulnerable to
cyber attacks [4, 5]. AGC adjusts the generators’ output to
make the frequency of the system within a safe range. Breach
of this safe range due to frequency excursion caused by cyber
attacks can cause damage in the system [2, 4]. Therefore, in
this work, we consider a practical scenario where AGC is
distributed in large scale with networked sensors collecting
sensing data, e.g., the system frequency and power export. In
a practical running system, we have no knowledge of when
and where the attacks would happen and the massive sensing

data collected in the wild are left unlabeled. As manually
collecting and labeling sensing data for different cyber attacks
is expensive and time consuming, it is challenging to leverage
very limited number of labeled data to develop effective
models to detect different cyber attacks in real time.

Researchers have proposed several mechanisms [6, 7, 8, 9,
10, 11] to detect and identify cyber attacks in power systems.
Some previous works [6, 7, 8, 9] make use of supervised
learning models and require a large number of labeled data
to achieve accurate attack detection, which is not scalable for
real systems. Unsupervised learning based methods, including
the traditional machine learning based [1, 10, 12, 13] and
deep learning based [14, 15], have been proposed to make
anomaly detection in power grids using the unlabeled data.
In practice, different cyber attacks have completely different
means to disrupt the power system, which indicates different
countermeasures need to be taken against them. As a result, it
is not sufficient to do anomaly detection only. Recent works
[14, 15] leverage unsupervised learning for the detection of
FDI and TD attack, respectively. These methods, however,
only target a single specific type of attack.

We aim to take a step further towards making multi-type
cyber attack detection and classification with the knowledge
learned from massive unlabeled sensing data and propose
PowerBERT, a BERT-like [16] self-supervised learning model
to deal with the sensing data in smart grids for cyber attack
detection. The proposed PowerBERT learns effective and
generalizable representations from massive unlabeled sensing
data collected in the wild. Once the representations have been
learned, together with a small amount of labeled data for the
targeted types of attacks, we can easily train a task-specific
classifier to detect various types of attacks.

The original BERT was designed for natural language
processing (NLP) and lacks the methodology to deal with
sensing data in power grids where the data distributions are
different and require in-depth investigation. Inspired by the
observation that cyber attacks usually cause both temporal
and spatial signal variation across the power girds, in this
paper, we propose to learn effective representations with the
sensing data collected from neighboring areas in a region.
We segment the time-series sensing data into data partitions
and each partition corresponds to an event. A series of events
in each detection window are fed into PowerBERT to learn
effective representations that can capture the spatial-temporal978-1-6654-3254-2/22/$31.00 ©2022 IEEE



signal fluctuation patterns caused by cyber attacks, and the
patterns caused by different attacks are distinctive.

We show the effectiveness of the learned representations
for detecting the FDI and TD attacks with a random forest
classifier. By leveraging a very small amount of labeled data
(0.05%), We can achieve 98.0% and 78.8% detection accu-
racy for FDI and TD attack, respectively. Using 0.05%∼1%
labeling rate, PowerBERT-based method outperforms existing
models at least by 6.1% to 3.1% in terms of F1-score.

The main contributions of this paper are as follows:
• We propose PowerBERT, a BERT-like auto-encoder to

learn the generalizable and effective representations with
massive unlabeled sensing data from neighboring areas
in smart grids. We propose to segment the time-series
sensing data with different window sizes and learn the
best configuration for detecting multiple types of attacks
in the AGC control in power grids.

• We train a random forest classifier based on the learned
representations with a small amount of labels for FDI and
TD attack. The classifier can be easily adopted to detect
other types of attacks with corresponding labeled data.

• We implement the proposed framework using reshape
layers. We show the selection of hyper parameters, e.g.,
event window size, for the model and compare the
performance of the proposed framework with existing
approaches. The results demonstrate the effectiveness
of PowerBERT in learning effective representations for
identifying FDI and TD attacks. The code is available1.

The rest of this paper is organized as follows. Section II
introduces the system model and attack models. Section III
presents the methodology and design of the framework. Sec-
tion IV reports the experiment settings, ablation study results
and comparative performance of PowerBERT-based method
and state-of-the-art methods. Section V discusses the related
work, and Section VI concludes this paper.

II. SYSTEM MODEL AND ATTACK MODELS

In this paper, we consider the cyber attacks in automatic
generation control (AGC) in power grids as our case study for
the proposed detection framework. In the following, we first
introduce the AGC model and then describe attack models for
FDI attack and TD attack, respectively.

A. AGC Model

In a power system, AGC regulates the grid’s frequency
within a safe range by dynamically adjusting the system
conditions in real-time [17]. A power grid can be divided into
several separate areas, and the AGC can also control the power
interchange rate among different control areas. In this paper,
we discuss the discrete-time AGC system, where the time is
divided into slots. We illustrate a three-area power grid with
37 buses in Figure 1(a) [5]. This system involves three control
areas and the dotted lines between two control areas are called
tie-lines. In this paper, we use this 37-bus system as our case

1https://github.com/fridge23/PowerBERT
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Figure 1. The system model. (a) Three-area power grid with 37 buses. (b)
Overview of AGC.

study to explore the cyber attacks in AGC control, which is a
representative power grid model denoting a small to middle-
scale real-world grid.

In the AGC system, the area control error (ACE) is a
control command used to regulate the generator output in the
feedback control. For an area i in the grid shown in Figure
1(b), the command ACEi is a weighted sum of two signals
inside the power grid i.e., the frequency deviation (∆ωi) and
power export deviation (∆PEi). Thus, it can be expressed
as: ACEi = ai∆PEi + bi∆ωi, where the ai and bi are two
constant weights. The control center sends the ACEs command
to adjust the generator output via the communication network
in different control area i. This control process is called the
AGC cycle which is usually about 2 to 4 seconds [17].

The power flow measurement from the power system is
usually faulty and noisy, so the state estimation (SE) is
designed to recover the information from noisy signal. The
measurement vector y can be expressed as: y = Mx+n, where
M represents the measurement matrix, vector x denotes all the
states in the grid, and the n denotes the noise. The target of
SE is to estimate the state vector x by x̂ = (M⊤WM)−1Wy,
where W is a weighted matrix. Then the estimated power flow
measurement is ŷ = Mx̂. In Bad Data Detection (BDD) [18],
the alarm will be triggered if the difference between y and ŷ,
i.e., ||y − ŷ||, is bigger than a defined threshold.

B. Attack Models

In this paper, we use the representations learned using
PowerBERT to detect two typical cyber attacks against AGC
control in the power grid [4, 6], the latest FDI attack [2] and
TD attack [3]. The learned representations can also be used
to detect other types of cyber attacks in smart grid as long as
they cause signal fluctuation in the system.

For traditional FDI attacks, after the adversaries know the
power flow matrix M, they can add attack vector a = Mc into
the power flow sensor measurement, where c is an arbitrary
vector, and the measurement becomes ŷ = M(x + c) + n,
so BDD is bypassed because the noise does not change. The
targeted FDI attack [2] in our work not only lends matrix M
to bypass BDD but also limits the magnitude of the false data
added by the FDI attack in a reasonable range so that the attack
minimizes disruptions when it initially enters the system and



keeps the frequency excursion long enough to ensure system
damage. Compared to traditional FDI attacks, the attack we
exploit is stealthier and more destructive [2].

In the time delay (TD) attack, the adversary aims to delay
the control command from the controller. Let y(t) denote the
control command generated and transmitted by the control
center in the tth time slot. The adversary maliciously delays
these packets by τ time slots. Thus, in the (t+ τ)th time slot,
the command y(t) arrives at the actuator. Since we consider
the discrete-time AGC control system in this paper, the delay
length τ is an integer. Moreover, different from FDI attacks,
the adversary does not modify any content of the transmitted
packet. The TD attack can be launched by compromising the
data communication channels (e.g., compromised routers) be-
tween the controller and the actuator to delay the transmission
of control commands [4]. Note that delayed signals may exist
in the system even without the cyber attacks due to the natural
communication latency. In the AGC, the attacker delays the
control command in one of the areas i, i.e., ACEi(t), by τ
slots, to create the system frequency excursion.

Overall, by either compromising the sensor readings (i.e.,
FDI attack) or delaying the control commands (i.e., TD attack),
the purpose of the adversary is to make the system’s frequency
exceed the safety threshold and then force the disconnection
between the generator and load or damage equipment. Same
as the existing work [2, 6], we consider the safety range of
the frequency deviation as [-0.5, 0.5] Hz, and the deviations
out of this range are regarded as unsafe.

III. METHODOLOGY

In this section, we introduce the details of the proposed
cyber attacks detection and classification model. The overview
of our framework is illustrated in Figure 2, which consists of 3
phases, i.e., data preprocessing, PowerBERT, and downstream
classifier training. The sensing data collected from neighboring
control areas in AGC are firstly normalized and extracted with
a specific data structure. All the extracted sets of data are then
fed into the PowerBERT self-supervised learning model to
learn representations, which are used to train the downstream
task-specific classifier with supervised learning.

A. Data Preprocessing

Data normalization: We use the min-max scalar to normal-
ize the collected ACE data. The normalized data sample can
be express as:x′

i =
xi−xmin

xmax−xmin
,where the x′

i ∈ (x′
1, x

′
2..., x

′
n)

is the scaled result, xi ∈ (x1, x2..., xn) is the original value
and n is related to the amount of data we have, xmin is the
smallest value and the xmax is the biggest. By using scalar,
all the data are in the range of [0, 1].

Data extraction: We use a sliding window to extract data
clips from the normalized dataset. As illustrated in Figure 3,
the sliding window with width w1 is used to extract a set
of data segments Bi ∈ (B1, B2, ..., Bm) from a data trace
collected in the 3 neighboring areas, and w1 is also the window
size of attack detection. For each Bi (i = 1, 2, ...,m), we
divide the data segment with a second window w2 into a set
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Figure 2. The proposed framework is comprised of data preprocessing, the
PowerBERT model and a task-specific classifier.
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Figure 3. The process of data extraction.

of data partitions Ei = Ei1, Ei2...Eik, where each partition
Eij (j = 1, 2, ..., k) captures the sensing signal distribution
at a short time interval, and we regard such a partition as an
event. All the events in Ei capture the signal fluctuation in
each detection window. As illustrated in Figure 3, before Ei

is fed into PowerBERT, we use a reshape layer to reshape the
data from w1 × 3dim to w1

w2
× (3w2)dim.

B. PowerBERT

PowerBERT is adopted from BERT model [16, 19, 20] to
extract the high-dimensional representations from the massive
unlabeled data. In NLP domain, BERT is a bidirectional
model used to pre-train deep bidirectional representations from
unlabeled text by jointly conditioning on both left and right
context. In this paper, we do not make use of the span
mask algorithm to train PowerBERT. It is because the inputs
in original BERT are word tokens while the input data in
PowerBERT are continuous data samples. The whole model is
trained by back propagation to reduce the reconstruction error.

Before the processed data are fed into the encoder, a dense
layer is used to embed data into high-dimensional tensor. For



instance, the ws points’ data is embedded from ws× 3dim to
ws×Ddim(D > 3).

Encoder: The encoder involves 3 transformer blocks.
Each block includes a layer Normalization layer, a
multi-headed attention layer, an adding layer that works
as a residual connection, and finally a fully con-
nected layer. The process of block i can be ex-
pressed as: Bi = MultiAttn(LayerNorm(Ai

in)), A
i
out =

Dense(LayerNorm(Bi + Ai
in)) + Bi + Ai

in, where Ai
in

denotes the data fed into block i, Bi denotes the data output
by multi-headed attention layer, Ai

out denotes the output data
of block i.

Decoder: The outputs of the encoder go to the decoder,
where the extracted high-dimensional representations are re-
constructed. The decoder has 2 blocks inside. The encoder
has more blocks than the decoder, for the reason that we
need a more complex encoder to extract better features for
the downstream tasks. The formulas of the blocks m can be
expressed as: Dm = MultiAttn(LayerNorm(Cm

in)), C
m
out =

Dense(LayerNorm(Dm+Cm
in))+Dm+Cm

in, where Cm
in is

the inputs of block m, and Cm
out is the outputs of block m, and

Dm denotes the outputs of multi-headed attention layer. After
the decoder, a fully connected layer is designed to reshape the
data back to the original structure.

Train: The loss of the autoencoder is computed based on
the difference between the original data and the reconstructed
data. By using back propagation, the weights in the model
are updated, where Adam optimizer [21] is used for updating
weights. Mean absolute error (MAE) function, i.e., MAE =
1
n

∑n
i=1 |yi − ŷi|, is utilized to calculate the loss. Compared

with the mean square error, MAE is more sensitive with errors
less than 1. For the learning rate, we use the learning rate
warm-up to speed up the training process.

Feature extraction: After training, we extract the ap-
propriate features from PowerBERT for the training of the
downstream classifier. In addition to the latent representations,
we also make use of the reconstruction error distributions to
better train the classifier. The representations are the outputs
of the encoder of PowerBERT, and the error distributions, as
illustrated in Figure 2, are extracted from the reconstruction
errors of PowerBERT, i.e., Xin − Xout, where Xin is the
input of PowerBERT, and Xout is the reconstructed results.
We utilize a Gaussian Mixture Model (GMM) to analyze the
distributions of the errors. Some unlabeled data are utilized
to train a GMM which clusters the error distributions into
k types. For the reason that one type of attack may cause
several types of error distributions, k should be much bigger
than the cyberattack types l(k >> l). Lastly, we concatenate
the representations and the error distributions as the features
used for classifier training.

C. Downstream Classifier Training

Once the features have been well learned from PowerBERT,
we use a small amount of labeled data to train the classifier
to do the classification of FDI and TD attack. We deploy a
random forest model with 1000 estimators as the classifier.

Although being a small amount, the labeled data includes all
the targeted types of cyber attacks. In our case study, the
classifier is trained to identify the data without an attack (i.e.,
normal), FDI attack and TD attack.

IV. EVALUATION

We now evaluate the performance of the proposed frame-
work for detecting the FDI attack (FDIA) and TD attack
(TDA) against AGC in the power grid. We first describe the
dataset and evaluation metrics, and then briefly introduce other
state-of-the-art attack detection models. After that, we show
our model performance and the comparison with other models.

A. Methodology
Dataset: We use industry-strength power system simulator

PowerWorld [22] to simulate cyber attacks against AGC in
the three-area 37-bus model as shown in Figure 1(a). We
add randomly generated load deviations to simulate real-
world dynamics. The ACE data samples are collected every
4 seconds. We collect data from the 3 control areas shown in
Figure 1(a) when the power system is under FDI attack [2], TD
attack [3], and without attack, respectively, and all the attacks
are launched in area 3 at random time. If the extracted data
segment (as introduced in Section III-A) contains any data
samples that are collected when the system is under attack,
the segment is labeled as the corresponding type of attack. In
total, we collect around 17,000 traces, where there are 6,944
traces without any attack, 4,990 traces involving TD attack
and 5,000 traces involving FDI attack.

We randomly divide the data traces into training (59.5%),
validation (10.5%), and testing (30%) set. The entire training
set is used for self-supervised representation learning without
using the labels. We randomly select a% (a = 0.05, 0.1, 1)
of the training set as the labeled set for supervised classifier
training to mimic the practical scenario where only limited
labels are available. The labeled set consists of 50% of normal
data (no attack), 25% of FDI attack data and 25% of TD attack
data.

Metrics: We use the precision, recall and F1-score to
evaluate the model performance. Specifically, Precision =

TP
TP+FP , Recall = TP

TP+FN , f1 − score = Precision+Recall
2 ,

where TP denotes true positive, meaning the data segment
is classified as the correct class; TN denotes true negative,
meaning the data segment of other classes is not classified
into the class; FP denotes false positive, meaning the data
segment of other classes is classified as the class, and FN
denotes false negative, meaning the data segment is classified
as other classes.

B. Different learning models
In the evaluation, we compare the proposed model with

other alternative models, which are based on state-of-the-art
machine learning models in the literature.

PowerBERT+RF model: We use the PowerBERT to extract
representations, a 27-component GMM to extract the recon-
struction error distributions, and a 1000 estimators’ random
forest classifier to identify the types of attacks.



Table I
EXPERIMENT RESULT COMPARISON FOR EVENT WINDOW SIZE

SELECTION.

Event size(s) Normal f1 TDA f1 FDIA f1
4 95.8% 75% 98.3%
8 94.9% 69.3% 97.3%

12 94.6% 66.8% 97.1%
20 96.1% 78.5% 98.6%
24 96% 78% 98.5%
40 95.6% 74.4% 97.6%

DNN model [8]: It is a MLP model, which involves 3
hidden layers. Because it was only designed for FDI attack
detection, so we change the last layer of the model from 2
units to 3 units and train it to do classification task.

RNN model [9]: RNN model is very sensitive with the
temporal information. We used an RNN model with 3 LSTM
layers which have 64 units and a 33-unit fully connection layer.
For the output layer, we set 3 units to classify the data into
different categories.

DB-RF [23]: A variant of random forest, which involves
two random forest levels, and the first level performs anomaly
detection, and the second level identifies the type of attacks.
Two levels work with different kinds of features. We set the
model with 330 estimators and train it to do triple classifica-
tion.

RF: A random forest model that is trained with the raw data
instead of the learned representations. The model has 1000
estimators and identify data into 3 categories.

PowerBERT and other models are implemented with
python, scikit-learn and tensorflow [24, 25]. They are trained
in a server equipped with a PC has 3.7GHZ 6-core processor.
The learning rate and batch size in both self-supervised and
supervised training phases are 1024.

C. Evaluation Results

1) Event window size selection.: As introduced in Section
III, in each detection window, we divide the data samples into
data partitions with window size w2, and regard the partitions
as events. We compare the performance of the models with dif-
ferent sizes (w2 = 4, 8, 12, 20, 24, 40s) for data partitioning.
In this experiment, the detection window size w1 is set to 120s,
which corresponds to 30 data samples collected from each grid
area, and also involves (30, 15, 10, 6, 5, 3) events according
to different event window sizes. As presented in Table I, the
model with event window size of 20s, which corresponds to 5
samples from each area, outperforms models with other sizes
for all the 3 classes. Thus we use w2 = 20s in our final model
design.

2) Sliding window size selection: We test the performance
of our model with different sizes for the sliding window w1.
Figure 4 plots the F1-score of the models with w1 size of 20,
40, 60 and 120s. We see that as the window size increases,
the model performs best in TD attack identification when the
window size is 40s, and performs best in FDI attack at window
size 120s. In order to reduce the computation overhead and
ensure prompt detection, we use w1 = 40s in our model.
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Figure 4. Experiment results in PowerBERT+RF for sliding window size
selection.

Table II
PERFORMANCE COMPARISON OF POWERBERT+RF USING THE DATA

FROM INDIVIDUAL CONTROL AREA AND ALL 3 CONTROL AREAS.

Normal f1 TDA f1 FDIA f1
Single-area PowerBERT(average) 88.5% 53.1% 72.8%

Single-area PowerBERT(best) 94.4% 61.7% 95.5%
PowerBERT 96.5% 78.8% 98.0%

3) Effectiveness of spatial redundancy: We compare the
performance of two different versions of our model trained
using the ACE data from individual control areas and all 3
control areas, respectively. The results are reported in Table
II, where we provide the average and best performance (for the
model works on the area where attacks launched) of single-
area PowerBERTs among the 3 control areas and PowerBERT.
We see that the performance of PowerBERT is significantly
better than single-area PowerBERT, which demonstrates the
effectiveness of using spatial redundancy in smart grids.

4) Effectiveness of reconstruction error distributions: We
compare the performance of three classifiers trained with
different feature settings using the labeling rate of 0.05%.
The classifiers include representation+RF: the classifier using
the representations as features, representation+mean+RF: the
classifier using the representations and the mean of reconstruc-
tion errors as features, and PowerBERT+RF: the classifier
using the representations and reconstruction error distributions
as features. As shown in Table III, adding the mean value
of reconstruction errors does not result in any performance
improvement. By combining the error distributions and the
representations, we can increase the detection F1-score by 1%
for the TD attack. Since the TD attack is one of the most
difficult types of attacks to detect in practice, we employ
the combination of representations and reconstruction error
distributions as the features in our final framework design.

Table III
PERFORMANCE COMPARISON FOR CLASSIFIERS WITH DIFFERENT

FEATURES.

Metrics Representation Representation PowerBERT
+RF +mean+RF +RF

F1
-s

co
re Normal 96.4% 96.4% 96.5%

TDA 77.8% 77.8% 78.8%
FDIA 97.9% 97.9% 98.0%



Table IV
MODEL COMPARISON USING DIFFERENT AMOUNT OF LABELED DATA FOR

TRAINING.

labeling F1- DNN RNN DB- RF PowerBERT
size score(%) RF +RF

0.
05

% Normal 93.7 94.7 96.0 96.0 96.5
TDA 58.7 57.7 70.3 72.7 78.8
FDIA 85.7 94.0 96.0 96.3 98.0

0.
1%

Normal 95.3 96.0 96.3 96.3 96.7
TDA 67.7 72.3 74.0 75.0 80.6
FDIA 91.7 96.7 97.0 98.0 98.2

1%

Normal 96.0 96.5 97.0 97.0 97.2
TDA 77.0 80.5 81.0 81.7 84.8
FDIA 97.7 98.5 98.3 99.0 98.6

-40 -20 0 20 40
-30
-20
-10

0
10
20
30
40 No attack

TD attack
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Figure 5. Representation visualization with t-SNE.

5) Model comparison: In this subsection, we compare the
detection performance of our model with other state-of-the-art
models as introduced in Section IV-B. We show the perfor-
mance of all the models with three different settings, where
the amount of labeled dataset for model training is different.
We use the labeling rate of 0.05%, 0.1%, and 1% to train all
the models respectively and compare their performance.

Table IV summarizes the F1-score of attack detection using
different models. For all of the models, the F1-score increases
as the labeling rate increases. PowerBERT+RF achieves the
best performance for most of the time, especially when the
labeling rate is low. When the labeling rate increases to 1%,
all of the models can achieve good performance. In practice,
however, 1% labeling rate is usually too expensive to get given
the large amounts of sensing data collected in the wild.

6) Representation visualization: To gain a more intuitive
understanding of the effectiveness of the representation learned
by our model in the classification task, we visualize the learned
high-dimensional representations of data in 2D space by t-
distributed stochastic neighbor embedding (t-SNE) [26]. We
randomly select a total of 1500 equal amounts of no attack
data, TD attack data and FDI attack data. Then they are
feature extracted by PowerBERT, reduced to two-dimensional
data with t-SNE and drawn on a scatter plot. The result is
shown in Figure 5. It is obvious that samples belonging to
the same types of attacks exhibit high clustering effect. The
representations of TD attack and no attack are close to each
other, which explains the relatively low classification F1-socre
for TD attack as reported in the experiment results.

7) Computation overhead: We show the inference speed
of our model and other models in this part. For each model,

Table V
THE INFERENCE TIME FOR EACH SAMPLE IN DIFFERENT MODELS (S).

DNN RNN DB-RF RF PowerBERT+RF
2.17E-7 2.50E-7 4.40E-6 8.10E-5 5.46E-4

we let it performs attack detections and calculate the average
time needed for one detection. We use a PC has 3.7GHZ 6-
core processor to do the experiments. The results are reported
in Table V, and we see that all models can make real-time
detection and the overhead is affordable for workstations.

V. RELATED WORK

Researchers have proposed signal processing based and
machine learning based approaches to detect cyber attacks in
smart grids.

Signal processing based. Some works [27, 28] proposed
to detect cyber attacks using the classic signal processing
models, where the approaches such as Kalman filter and
wavelet singular entropy is used for detecting the existence of
cyber attacks. [27] presents a two-stage kalman filter to detect
cyber attacks and estimate the bias of the attacks. [28] uses
the wavelet singular entropy in FDI attack detection. These
methods only perform anomaly detection without the ability
to identify different types of attacks.

Machine learning based. Compared with the signal pro-
cessing based approaches, machine learning based approaches
are more robust to the changes and noises in the environment.
They include supervised learning approaches and unsupervised
learning ones. Supervised learning based models [6, 7, 8, 9]
have been proposed to detect various types of cyber attacks
in smart grids. Lou et al. [7] exploit BiLSTM based model
for the detection of TD attack. Mohammad Ashrafuzzaman et
al. propose DNN based model [8] for FDI attack detection.
Qingyu Deng et al. use LSTM based model [9] to detect
FDI attack in a power grid. These approaches require a
large amount of labeled data to train the model for accurate
detection. To reduce the reliance on labeled data, unsupervised
learning approaches [10, 11, 12, 13, 14, 15] are studied. [11]
compares the performance of the combination of machine
learning models and statistical feature extraction methods.
[10] detects anomaly by leveraging KNN model. One-class
SVM also be used in anomaly detection [12], as well as
isolation forest [13]. Yang at el. propose WPD-ResNet model
to do transfer learning and detect anomalies in power station
communication [15]. And stacked denoising autoencoder is
used to detect and classify several types of FDI attack [14].
These methods either do anomaly detection [10, 12, 13]
instead of attack classification or only target a specific type
of attacks [14]. In this paper, we propose a BERT-like model
to learn the generalizable and effective representations that
capture distinctive patterns of different attacks and, as a result,
can be used to identify different types of attacks.

VI. CONCLUSION

In this paper, we proposed PowerBERT, a self-supervised
learning model to learn the generalizable features from mas-



sive unlabeled sensing data for cyber attack detection in smart
grids. We demonstrated the effectiveness of the PowerBERT-
based framework in detecting and identifying two common
types cyber attacks in AGC in power grids, and it has a better
performance in the downstream cyber attacks classification
than other signal processing based and machine learning based
models. We believe the proposed framework can be easily
adopted to be implemented in other scenarios since it only
requires easily accessible unlabeled data and a very small
amount of labeled data to achieve superior performance.
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