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ABSTRACT
Deep learning greatly empowers Inertial Measurement Unit (IMU)
sensors for various mobile sensing applications, including human
activity recognition, human-computer interaction, localization and
tracking, and many more. Most existing works require substantial
amounts of well-curated labeled data to train IMU-based sensing
models, which incurs high annotation and training costs. Compared
with labeled data, unlabeled IMU data are abundant and easily acces-
sible. In this work, we present LIMU-BERT, a novel representation
learning model that can make use of unlabeled IMU data and extract
generalized rather than task-specific features. LIMU-BERT adopts
the principle of self-supervised training of the natural language
model BERT to effectively capture temporal relations and feature
distributions in IMU sensor measurements. However, the original
BERT is not adaptive tomobile IMU data. Bymeticulously observing
the characteristics of IMU sensors, we propose a series of techniques
and accordingly adapt LIMU-BERT to IMU sensing tasks. The de-
signed models are lightweight and easily deployable on mobile
devices. With the representations learned via LIMU-BERT, task-
specific models trained with limited labeled samples can achieve
superior performances. We extensively evaluate LIMU-BERT with
four open datasets. The results show that the LIMU-BERT enhanced
models significantly outperform existing approaches in two typical
IMU sensing applications.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; •Computingmethodologies→Ma-
chine learning.
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1 INTRODUCTION
In recent years, the proliferation of embedded and mobile devices
unveils the era of Artificial Intelligence of Things (AIoT). Particu-
larly, wearable devices have played a critical role in a wide range
of applications, including human activity recognition [13, 33, 51],
human-computer interaction [24], localization and tracking [14, 55,
60], and etc. Many of them highly rely on the data from Inertial
Measurement Unit (IMU) sensors (i.e., accelerometer, gyroscope,
and magnetometer), which are widely equipped in personal mo-
bile devices, such as smartphones, smartwatches, and even smart
earphones.

Due to the rapid development of deep learning, many works
adopt deep neural networks to process IMU data [13, 21, 23, 33, 51].
Compared with manual feature engineering, deep learning algo-
rithms can extract more effective features and gain significant per-
formance improvements in inference. Most existing works [13, 21,
23, 33, 51], however, rely heavily on supervised learning processes
where substantial amounts of labeled IMU data are required to train
sensing models. The requirement of large labeled data hinders their
adoption in practice for two reasons. First, labeled IMU data are
scarce because it is costly and time-consuming to collect sufficient
labeled IMU samples in the real-world settings. Second, the diver-
sity in mobile devices, usage patterns, and environments results
in the need for labeled data with various combinations of phone
models, users, and usage scenarios to attain generalizable models.

To address the challenge of labeled data scarcity, this paper
proposes a representation learning model that can leverage massive
unlabeled data to extract general features through self-supervised
training technique. After the representations are learned, multiple
task-specific inference models can thus be trained with a small
amount of labeled IMU samples. The key rationale is to learn the
generalizable representations from the abundant unlabeled IMU
data instead of scarce labeled data. In particular, unlabeled data
can be easily collected from a variety of wearable devices, usage
patterns, and scenarios.

To design such a representation learning model, we first answer
the following basic question to clarify our target: what general fea-
tures are desired from the IMU data? After scrutinizing the character-
istics of IMU data, we focus on two types of features: distributions
of individual measurements of IMU sensors, and temporal relations
in continuous measurements. The correlation of IMU readings on
three axes gives information about the attitude of the device, which
is an important feature of the usage patterns. For example, the
readings of the accelerometer and gyroscope become dramatically
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larger if the user transits to walking from standing still. The three-
axis components of the accelerometer correlate differently when
the device orientation varies. As a typical time-series data, temporal
relations within sensory data give further information about user
behaviors.

Our model design is thereafter guided by answering the follow-
ing question: how to extract those general features or representations
from unlabeled IMU data? Inspired by the emerging self-supervised
techniques in natural language processing, we borrow the key
framework of BERT [6] to process unlabeled IMU data and ac-
cordingly extract general features. BERT designs two novel self-
supervised training methods to learn the bidirectional language
representations from the unlabeled text. However, intended for nat-
ural language data processing, original BERT lacks methodology in
processing IMU data, e.g., multi-modality problem of various IMU
sensor readings. This paper thus devises a variety of techniques
including data fusion and normalization, effective training method,
structure optimization, and embeds them into the BERT framework
for improved efficacy and efficiency in IMU sensing applications.

We name our model LIMU-BERT, which stands for a lite BERT-
like self-supervised representation learning model for mobile IMU
data. To demonstrate the effectiveness and generalizability of learned
representations, we conduct extensive experiments with four open
IMU datasets. The results demonstrate that LIMU-BERT enhanced
deep learning approaches significantly outperform state-of-the-
art approaches, i.e., by at least 10% in terms of both accuracy and
F1-score in Human Activity Recognition (HAR) as well as Device
Placement Classification (DPC) applications. In summary, this paper
makes the following contributions:

• This paper devises a self-supervised approach to learn gen-
eral representations from unlabeled IMU data. Based on
learned representations, task-specific models can be trained
with few labeled samples, which substantially reduces the
supervised training overhead with labeled data.

• This paper proposes a series of adaptations and enhance-
ments around BERT to best work with IMU data in mo-
bile sensing applications. The proposed LIMU-BERT is light-
weight, which can be accommodated in mobile devices.

• A prototype system is developed and experimentally evalu-
ated. Extensive evaluation results show the effectiveness of
LIMU-BERT in learning generalizable data representations.
The codes of LIMU-BERT are made publicly available 1.

The rest of this paper is organized as follows. Section 2 presents
the preliminary knowledge this paper is built on. Section 3 intro-
duces LIMU-BERT workflow along with the design details. Section
4 provides the experiment details and evaluation results. Section 5
reviews the related works and Section 6 discusses the limitations
and possible future studies. Section 7 concludes this paper.

2 PRELIMINARIES
2.1 Representation Learning
Representation learning techniques aim to extract the representa-
tions or general features from raw data. Traditional methods rely on
domain expertise or prior knowledge to engineer features. Recent

1https://github.com/dapowan/LIMU-BERT-Public

studies show that automatic representation learning with deep neu-
ral network is effective when provided large labeled data. It is how-
ever costly and time-consuming to gather a dataset with clean labels.
To make use of large amounts of unlabeled data, more advanced
models [6, 7, 19, 53] have been proposed to extract representations
from unlabeled images, video, or texts. The process of learning
representations from unlabeled data is called self-supervised learn-
ing. The literature has shown that self-supervised learning brings
significant performance gains for a range of challenging tasks.

Bidirectional Encoder Representations fromTransformers (BERT)
[6] is one effective self-supervised learning model for Natural Lan-
guage Processing (NLP), which improves the performances of NLP
models to higher levels in various NLP applications. BERT features
two self-supervised tasks: Masked Language Model (MLM) and
Next Sentence Prediction (NSP). MLM randomly masks parts of
the input text and the model is trained to predict the original iden-
tity numbers of the masked words, while NSP requires the model
to determine whether two given sentences are subsequent or not.
Through MLM and NSP, BERT can learn contextual relations in text
data and accordingly generate effective embeddings for each word.
After the self-supervised training process, pre-trained models can
be connected with task-specific models to perform various NLP
tasks with supervised training.

Inspired by BERT, we aim at employing a similarly effective self-
supervised technique for mobile sensing. As time-series type data,
IMU sensor data also contain rich contextual relations. We believe
effective representations extracted from unlabeled IMU data can
improve the performances of down-stream inference models and
significantly reduce the label requirements at the same time.

2.2 Uniqueness of IMU Sensing
BERT is designed for processing text data, which greatly differs
from IMU data. To make the BERT adaptive to IMU sensing appli-
cations, we carefully examine the characteristics of IMU data and
obtain the following key observations that will guide the designs of
LIMU-BERT. Figure 1 provides four sets of IMU (accelerometer, gy-
roscope, magnetometer) readings of different human activities with
different device placements. For instances, the readings in Figure
1(a) are collected when the user stands still with the smartphone
placed in the bag, and those in Figure 1(c) are collected when the
user walks with the smartphone placed in the pocket.
Fusion matters. In Figure 1(a), gyroscope readings have an evi-
dent fluctuation while accelerometer readings are steadier since
gyroscope is more sensitive to the movement. The impact of gyro-
scope fluctuation can be mitigated if the changes of accelerometer
readings are considered. In other words, cross referencing of multi-
ple sensors can provide more information and improves the overall
performance, which has been shown by prior work [36]. Thus,
aligned with the recent research interest of multi-modal sensor fu-
sion [23, 49, 51], the representation learning model should support
the data fusion with multiple IMU sensors, which is not the design
objective of the original BERT for NLP.
Distribution matters. By comparing individual measurements of
accelerometer and gyroscope in the three activities (i.e., standing,
walking, and running), we find their ranges greatly vary. For exam-
ple, the gyroscope readings are within (−5, 5) when the user walks

https://github.com/dapowan/LIMU-BERT-Public
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Figure 1: IMU measurements of daily activities with different device placements.

and are distributed between -15 and 15 when the user runs. The
relations among the 3-axis readings also change when the device is
placed differently. It is obvious that accelerometer readings on y-
axis have largest values compared to other two axes if the device is
in a bag but they are differently related when the device is placed in
the pocket. Therefore, we believe the distribution of IMU readings
contains rich information, which is one feature LIMU-BERT should
capture. We argue that any transformation, which may destruct the
distribution information of raw IMU data, should not be applied
before feeding them into neural network if we want to capture
general features.
Contextmatters. As Figure 1(a) shows, the occasional fluctuations
are inevitable since human activities are complicated. However,
walk and run exhibit obvious periodical patterns on the IMU data,
which is a reliable feature that distinguishes them from standing
still. The detailed periodical features (e.g., stride frequency) may
further distinguish walk and run. Such periodical pattern further
varies when the device is placed differently. By observing the IMU
readings when the user is walking in Figure 1(b) and Figure 1(c),
we find that readings of the smartphone in the pocket have more
significant changes. This is likely because the smartphone orienta-
tion changes frequently as the leg moves compared to it is in the
bag. In summary, temporal relations also play an important role
in representation learning for IMU data, which will likely benefit
from a BERT-like design.
Efficiency matters. LIMU-BERT targets processing IMU data col-
lected from mobile devices in real time. Mobile devices have limited
computation capability and battery capacity. The base model of
BERT has about 110 million parameters, which is too heavy for
mobile devices. Therefore, a lightweight and efficient design is
needed.

2.3 Potential Applications
Manymobile devices are equippedwith IMU sensors (i.e., accelerom-
eter, gyroscope, and magnetometer), which are widely used in vari-
ous applications including estimating the attitudes ofmobile devices
[34, 59], tracking users’ arm [24, 35], and implementing secure text
pin [3]. They recently enable human activity recognition [13, 33, 51],
which has received high research attention. It seeks profound high-
level knowledge about human activities. The motion information
extracted from IMU data can also be used for indoor localization
and tracking [38, 39, 50, 56]. For those applications, we find that
device placements play an important role, e.g., Ear-AR [50] and

Figure 2: Framework overview.

RMPCA [5] need to know when the smartphones are in the pant
pockets before estimate the heading direction or step length.

For these influential applications of IMU sensors, LIMU-BERT
aims at extracting general features to achieve superior performance
with limited labeled samples. This paper will demonstrate the effi-
cacy of LIMU-BERT using the following applications as vehicles,
i.e., Human Activity Recognition (HAR) and Device Placement
Classification (DPC).

3 DESIGN
3.1 Overview
Before diving into the details, the overview of our framework is
presented in Figure 2, which consists of self-supervised and su-
pervised learning phases. There are three major components in
our framework, including LIMU-BERT, decoder, and classifier. The
LIMU-BERT takes the unlabeled IMU data as input and outputs
high-level representations or features (the striped rectangles in
Figure 2). The decoder reconstructs the unlabeled data based on
the learned features. The classifier trained with a small amount of
labeled representations aims to accomplish a task-specific applica-
tion, such as HAR.
Self-supervised learning. In this phase, we mask partial readings
of unlabeled samples and feed them into LIMU-BERT. LIMU-BERT
and the decoder jointly predict the original values of masked read-
ings by learning the temporal relations among IMU data. The ob-
jective of self-supervised learning process is to fully utilize a large
amount of unlabeled data and accordingly extract general features.
Supervised learning. Next, we transfer the LIMU-BERT model
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and connect it with a classifier. In this phase, all parameters of the
LIMU-BERT are frozen and only the classifier is trained with lim-
ited labeled representations that have been processed by the LIMU-
BERT. At run time after the supervised learning, the LIMU-BERT
and classifier are deployed together to estimate the task-specific
results for IMU sensor data.

In the following subsections, we introduce the detailed designs of
our framework along with the structures of the three components.

3.2 Fusion and Normalization
According to the first observation mentioned in Section 2.2, LIMU-
BERT should handle multiple sensor data. But the readings of IMU
sensors have different distributions, which can be seen in Figure 1.
And such differences would affect the model performance based on
our experiments. The original BERT, however, does not consider
the normalization issue since the input data are well-normalized
features (e.g., one-hot vectors). Therefore, the sensor measurements
need to be properly normalized before being fed into LIMU-BERT.

Common normalization methods are min-max normalization
or mean-variance normalization. Some existing normalization ap-
proaches apply data transformations, e.g., DeepSense [51] applies
Fourier transform and replaces raw data with frequency domain
features, which are free from the normalization issue. Those meth-
ods, however, result in the losses of distribution information and
may negatively affect the quality of the general representations. To
this end, we design a simple but effective normalization method
on accelerometer and magnetometer readings to narrow the range
differences and not severely alter their distributions, which can be
expressed by:

𝑎𝑐𝑐𝑖 =
𝑎𝑐𝑐𝑖

9.8𝑚/𝑠2
, 𝑚𝑎𝑔𝑖 =

𝛼 ·𝑚𝑎𝑔𝑖√∑
𝑚𝑎𝑔2

𝑖

, 𝑖 ∈ {𝑥,𝑦, 𝑧} (1)

where 𝑎𝑐𝑐𝑖 and𝑚𝑎𝑔𝑖 denote the measurements in the 𝑖-axis of the
accelerometer and magnetometer, respectively. The 𝛼 is a weight
scaling the range of the magnetometer readings, which is set to 2
in LIMU-BERT. The magnetometer reading are normalized with
the magnitude since it is easily affected by environments (such
as electronic devices nearby). But the relations among the 3-axis
readings of magnetometer remain. We keep the distribution of
gyroscope readings because they are naturally small values. By
Equation 1, all IMU sensor readings primarily distribute in the
similar ranges (e.g., [−8, 8]).

The normalized IMU readings are then cut by a fixed window
𝑋 ∈ R𝑆𝑑𝑖𝑚×𝐿 , where 𝐿 is the number of normalized readings in
each window and 𝑆𝑑𝑖𝑚 is the dimension of collected IMU features.
For instance, 𝑆𝑑𝑖𝑚 is six if only accelerometer and gyroscope data
are gathered since each sensor has three dimensions. The first three
features correspond to the three axes of accelerometer while the last
three correspond to the three axes of gyroscope. An IMU sample
𝑋 is also called an IMU sequence in our paper. The 𝑿 denotes a
tensor or matrix and 𝑿𝑖 𝑗 denotes the element in the 𝑖-th row and
the 𝑗-th column in the 𝑿 . Let bold upper-case letters 𝑿𝑢 and 𝑿𝑙

represent unlabeled and labeled samples, respectively. Each labeled
sample 𝑿𝑙

[𝑖] ∈ 𝑿𝑙 corresponds to a true label 𝒀 [𝑖] ∈ 𝒀 , where 𝒀 is
the label set.

A critical characteristic of IMU sensors is that the number of
features 𝑆𝑑𝑖𝑚 is small (e.g., six). To extend the dimension of features
and fuse IMU sensors, we project the normalized sensor data𝑋 into
a higher space by:

𝑰 = Proj (𝑋 ) =𝑾 × 𝑿 (2)

𝑾 is a matrix of size𝐻𝑑𝑖𝑚 ×𝑆𝑑𝑖𝑚 , where𝐻𝑑𝑖𝑚 is the hidden dimen-
sion larger than 𝑆𝑑𝑖𝑚 . From Equation 2, sensor readings collected at
the same measurement time are fused together in the elements of
one column in 𝑰 ∈ R𝐻𝑑𝑖𝑚×𝐿 . Compared with the normalized sensor
data 𝑋 , 𝑰 contains more implicit features. Note that this projection
is implemented by a linear layer. Next, LIMU-BERT leverages Layer
Normalization [1] to normalize the fused features corresponding
to the same measurement time:

𝑰 ′𝑖 𝑗 = LayerNorm (𝑰 ) =
𝑰 𝑖 𝑗 − 𝐸(𝑰 · 𝑗 )√
𝑉𝑎𝑟 (𝑰 · 𝑗 ) + 𝜖

· 𝛾 + 𝛽 (3)

where 𝜖 is a small value while 𝛾 and 𝛽 are learning hyper parame-
ters. The 𝐸(𝑰 · 𝑗 ) and 𝑉𝑎𝑟 (𝑰 · 𝑗 ) denote the mean and variance of the
elements in the 𝑗-th column, respectively. By learning the parame-
ters of the normalization layer, the neural network can dynamically
normalize implicit features of IMU sensors.

3.3 Learning Representations
Based on our observations of IMU data, both distributions of indi-
vidual readings and temporal relations among continuous readings
are important features. Thus, self-supervised method should be able
to extract both two types of representations. After analyzing the
two self-supervised tasks (i.e., MLM and NSP) in BERT, we find the
NSP task is not suitable for IMU data. The reason is that learning
whether two IMU sequences are subsequent does not bring great
benefits to the model due to the frequent transitions of human
daily activities. On the other hand, we notice that the MLM task,
which masks some subsequences of a sequence and the models are
trained to predict the masked subsequences, has dual intentions
for IMU representation learning. First, after the MLM training pro-
cess, the classifier is able to reconstruct the masked readings based
on the corresponding representations, which means the features
learned by LIMU-BERT must contain distribution information. Sec-
ond, LIMU-BERT is required to generate representations for the
masked readings and such process forces it to learn the contextual
relations in IMU data. In summary, we argue that MLM is beneficial
to extracting our target features from IMU data.

The MLM task in BERT masks the text subsequences with only
one token since many words have independent meaning (e.g., apple,
water). However, the nature of human mobility leads to similar
IMU sensor data across adjacent measurements in time, which can
be observed in Figure 1. Therefore, the model will easily degrade
to reconstructing the masked readings by mirroring neighboring
readings if only the one-sample subsequences are masked. Longer
subsequences should be masked in order to provide a challenging
condition and thus train an effective model. To decide the length of
a masked subsequence, we implement a Span Masking mechanism
[15], which samples the length of masked subsequence (denoted
by 𝑙 ) from a geometric distribution 𝐺𝑒𝑜(𝑝) clipped at 𝑙𝑚𝑎𝑥 :

𝑃 (𝑙 = 𝑘) = (1 − 𝑝)𝑘−1𝑝, 𝑠 .𝑡 . 𝑙 ∈ [1, 𝑙𝑚𝑎𝑥 ] (4)
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Algorithm 1: Span mask algorithm
Input : IMU sequence 𝑿 , sequence length 𝐿, probability of

success 𝑝 , masked ratio 𝑝𝑟 , mask probability 𝑃𝑚
Output :Masked IMU sequence 𝑿 , masked position set 𝐼

1 𝑀𝑚𝑎𝑥 = 𝐿 × 𝑝𝑚 ,𝑚 = 0, 𝐼 = ∅;
2 sample 𝑝𝑚 from𝑈 [0, 1);
3 while𝑚 < 𝑀𝑚𝑎𝑥 do
4 sample 𝑠 from𝑈 [0, 𝐿);
5 if 𝑠 /∈ 𝐼 then
6 sample 𝑙 from 𝐺𝑒𝑜(𝑝);
7 𝑙 = min ( 𝑙, 𝑀𝑚𝑎𝑥 −𝑚), 𝑒 = min ( 𝑠 + 𝑙, 𝐿);
8 for 𝑗 = 𝑠 to 𝑒 do
9 𝐼 = 𝐼

⋃{ 𝑗},𝑚 =𝑚 + 1;
10 if 𝑝𝑚 < 𝑃𝑚 then
11 𝑿 · 𝑗 = 0;
12 end
13 end
14 end
15 end

where the probability of success 𝑝 is set to 0.2 and 𝑙𝑚𝑎𝑥 is set to
10. By masking longer subsequences, LIMU-BERT is challenged
to learn the temporal relations in IMU data more effectively and
accordingly reconstruct the masked subsequences from the context.
In addition, the IMU readings of each input sequence are gathered
at a longer period of time (i.e., 6 seconds), which contain richer
temporal information.

The details of the mask method is summarized in Algorithm 1.
The𝑈 [𝑎, 𝑏) in line 2 and 4 represents discrete uniform distribution
with an interval of [𝑎, 𝑏). The 𝑀𝑚𝑎𝑥 is the maximum number of
the masked readings in one IMU sequence and the equation in line
7 guarantees that a total of𝑀𝑚𝑎𝑥 readings are masked each time.
The 𝑠 and 𝑒 are the start and end indexes of each subsequence. In
line 2, we sample a 𝑝𝑚 uniformly and randomly from [0, 1) and the
IMU sequence would be masked only if 𝑝𝑚 < 𝑃𝑚 . In other words,
the masking is performed with a probability of 𝑃𝑚 . The reason is
that the input data are not unmasked in the supervised learning
phase, leading to the differences between the input data of two
learning phases. To tackle this issue, LIMU-BERT can learn how to
deal with both unmasked and masked data through probabilistic
masking. All values of the selected readings are replaced with 0 in
line 11. The masked ratio 𝑝𝑟 and masking probability 𝑃𝑚 are set to
0.15 and 0.8, respectively. The masked position set 𝐼 will be used in
the loss function.

3.4 Lightweight Model
Different from BERT, LIMU-BERT must be lightweight enough to
run on mobile devices. At the same time, lightweight LIMU-BERT
should be able to learn general representations from unlabeled IMU
data. To achieve this goal, we make the following customizations.

First, given the sampling rate of IMU sensors, the number of
readings collected in six seconds is large. For example, the sequence
length 𝐿 is 600 if the sampling rate is 100 Hz, which is larger than
the maximum sequence length (i.e., 512) in the original BERT. Large

Figure 3: Self-supervised training workflow.

sequence length would increase model complexity significantly.
Thus, we adopt a much smaller sampling rate (i.e., 20 Hz) compared
with the existing works [8, 33, 51], and accordingly decrease the
length of the input IMU sequences. Extensive experiments show
that 20 Hz is enough for our target applications. In addition, the
representations dimension𝐻𝑑𝑖𝑚 of LIMU-BERT is smaller than that
of the original BERT (e.g., 1024) due to the small number of features
for IMU sensors, which helps shrink the model size.

Second, LIMU-BERT adopts a cross-layer parameter sharing
mechanism [19] to improve parameter efficiency. LIMU-BERT con-
sists of multiple encoder layers, where only the parameters in the
first encoder layer are trained. The parameters of the first layer are
shared with other layers. This mechanism reduces the number of
parameters of LIMU-BERT significantly.

Third, we treat the IMU data reconstruction problem as a regres-
sion task rather than a classification task because the IMU features
are continuous variables. Instead of handling large number of cate-
gories in the classification task, regression model can avoid a heavy
output layer and simplify the decoder considerably.

3.5 LIMU-BERT Design
LIMU-BERT. Putting all designs above together, the detailed work-
flow of self-supervised process is illustrated in Figure 3. The ob-
jective of LIMU-BERT is to generate representations for unlabeled
IMU data, which can be formulated as:

𝑬 = 𝑓𝑒𝑛𝑐 (𝑿𝑢 ) (5)

where 𝑬 is a 𝐻𝑑𝑖𝑚 × 𝐿 matrix. In the beginning, normalized data
𝑋 needs to be masked before being fed into LIMU-BERT. The first
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projection and norm component together implement the sensor
fusion and normalization design in Equation 2 and Equation 3. Note
that all normalization components (i.e., the yellow rectangles in
Figure 3) represent layer normalization. Next, positional encoding
[43] is added into the input data to make full use of the order
information. After the second layer normalization layer, the hidden
features are expressed as follows:

𝑯 {0}
· 𝑗 = LayerNorm (𝑰 ′· 𝑗 + 𝑃𝐸( 𝑗 )) (6)

where 𝑃𝐸(·) is the positional embedding function, which maps an
order (column) index to a vector with length of𝐻𝑑𝑖𝑚 . All positional
embeddings are trainable variables. An attention-enteric block (i.e.,
the purple rectangle in Figure 3) then takes 𝑯 as input and repeats
for 𝑅𝑛𝑢𝑚 times before outputs the final representations. All com-
ponents in this block are identical and this process implements
cross-layer parameter sharing mechanism. There are three residual
blocks in the attention-enteric block, which can be expressed as:

𝑯 {𝑟 } = LayerNorm (FeedForward (𝑷 {𝑟−1}) + 𝑷 {𝑟−1})

𝑷 {𝑟−1} = LayerNorm (Proj (𝑨{𝑟−1}) +𝑨{𝑟−1})

𝑨{𝑟−1} = LayerNorm (MultiAttn (𝑯 {𝑟−1}) + 𝑯 {𝑟−1})
(7)

where 𝑟 is an integer in [1, 𝑅𝑛𝑢𝑚]. TheMultiAttn(·) is a self-attention
layer [43] with 𝐴𝑛𝑢𝑚 attention heads. The hidden dimensions of
query, key, value in the attention layer are 𝐻𝑑𝑖𝑚 . The Proj(·) repre-
sents a fully connected layer, whose input and output dimensions
are both 𝐻𝑑𝑖𝑚 . The FeedForward(·) consists of two fully-connected
layers with a hidden dimension of 𝐹𝑑𝑖𝑚 and its input and output
dimensions are the same as those of Proj(·). There is a Gaussian
Error Linear Unit (GELU) [9] activation function between two fully-
connected layers. Finally, we can get representations 𝑬 = 𝑯 {𝑅𝑛𝑢𝑚 }

for a masked IMU sequence 𝑿𝑚 . In LIMU-BERT, 𝑅𝑛𝑢𝑚 and 𝐻𝑑𝑖𝑚

are set to 4. According to the previous designs, the 𝐿 is set to 120
under a sampling rate of 20Hz.

Decoder. The aim of the decoder is to reconstruct the origi-
nal values of the masked IMU sequences with the representations
generated by LIMU-BERT, which can be formulated as:

�̂�𝒖 = 𝑓𝑑𝑒𝑐 (𝑬 ) (8)

𝑓𝑑𝑒𝑐 consists of three components: a projection, an activated and
normalization layer, and a prediction head. The decoder can be
formulated as follows:

�̂�𝒖 = LayerNorm (Pred (𝑫))
𝑫 = Proj (GELU (𝑬 )) (9)

where the Pred(·) and the Proj(·) denotes single fully-connected
layer with unit numbers of 𝑆𝑑𝑖𝑚 and 𝐻𝑑𝑖𝑚 respectively. Finally,
we get the reconstructed IMU sequence �̂�𝒖 from the masked IMU
sequence.

Training. As we mentioned earlier, the reconstruction problem
is regarded as a regression task. Therefore, the loss function in
self-supervised phase is defined as follows:

𝑙𝑜𝑠𝑠 =
1

|𝑋𝑢 |

|𝑋𝑢 |∑
𝑖=1

MSE (Select (𝑿𝑢
[𝑖]) , Select (�̂�

𝑢
[𝑖])) (10)

Figure 4: Supervised training workflow.

whereMSE(·) denotes Mean Square Error (MSE) function and |𝑋𝑢 | is
the number of unlabeled samples. Select(·) represents the selection
process in Figure 1, which selects the readings corresponding to
the masked position set 𝐼 in Algorithm 1. In other words, only
the reconstruction losses of the masked IMU subsequences are
computed. In the self-supervised training process, the parameters
in LIMU-BERT and decoder are updated with Adam [16] optimizer.

3.6 Task-specific Classifier Design
Classifier. After the LIMU-BERT is trained with unlabeled data,
it can be utilized to generate representations for labeled IMU data.
Based on the learned representations and their corresponding labels,
we can design task-specific models with supervised training. The
whole process is illustrated in Figure 4. Note that the IMU sequences
are not masked in the supervised training phase. Since the time
period (i.e., 6 seconds) of the input IMU sequence is relatively longer,
we can slice the subsequences of the representations to design the
task-specific classifier if a fine granularity is needed. The sequence
length of the classifier is denoted as 𝐿𝑐 . Note that slicing is an
optional step here.

In our framework, we design a lightweight classifier with Gated
Recurrent Unit (GRU) [4] as illustrated in Figure 4. It contains three
stacked GRU layers with hidden sizes of 20, 20, and 10, respectively.
The input size of first GRU layer is𝐻𝑑𝑖𝑚 . Upon the GRU layers, only
the hidden features at the last position are fed into dropout layer
with a drop rate of 0.5, which aims at reducing over-fitting. Next,
two fully-connected layers with 10 hidden units are constructed
before the softmax layer. The final output size is identical to the
number of classes in the targeted task. The GRU classifier is very
lightweight since only limited labeled samples are available.

In addition to the GRU classifier, we can design classifiers with
other neural network structures, such as Convolutional Neural
Network (CNN) [18] or Multi-head Attention [43]. We propose
two alternative classifiers in Figure 4. The hidden dimension of the
attention component in the first alternative is 36. For CNN-based
classifier, it adopts three 2D-convolutional layers, which consists
of 8, 16, and 4 feature maps, respectively, with kernel sizes of (3,3).
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There is a max pooling layer with (3,3) kernel and (2,1) stride after
each convolutional layer. Other components are the same as those
in the GRU classifier.

Training. The cross entropy loss is adopted to support multi-
class classification. Note that only the parameters in task-specific
classifiers are updated with Adam [16] optimizer in the supervised
training phase.

4 EVALUATION
4.1 Methodology
4.1.1 Datasets. We quantitatively evaluate the effectiveness of
LIMU-BERT with four publicly available datasets, which have been
commonly used in previous works [33, 49, 51]. Those datasets cover
a wide variety of device types, activities, users, and environments.
HHAR. HHAR dataset [40] contains readings from accelerome-
ters and gyroscopes from 9 users with 6 different activities (biking,
sitting, standing, walking, upstairs, and downstairs), and 6 types of
mobile phones (3 models of Samsung Galaxy and one model of LG),
which are carried by the users around their waist. The sampling
rate differs from 100 Hz to 200 Hz.
UCI. For UCI [32] dataset, 30 volunteers aged from 19 to 48 years
performed 6 basic activities (standing, sitting, lying, walking, walk-
ing downstairs, and walking upstairs) with a smartphone (Samsung
Galaxy S II) on the waist. Raw accelerometer and gyroscope read-
ings were collected at a constant sampling rate of 50 Hz.
MotionSense. MotionSense [25] includes accelerometer and gy-
roscope time-series data collected by an iPhone 6s. A total of 24
participants diverse in gender, age, weight, and height performed 6
activities (downstairs, upstairs, walking, jogging, sitting, and stand-
ing) with the smartphone in their front pockets. All data were
collected at a 50 Hz sample rate.
Shoaib. Shoaib et al. [36] collected data of seven physical activities
(walking, sitting, standing, jogging, biking, walking upstairs, and
walking downstairs). During data collection, 10 male participants
were equipped with five Samsung Galaxy SII (i9100) smartphones
placed on five body positions (right pocket, left pocket, belt, up-
per arm, and wrist). Accelerometer, gyroscope, and magnetometer
readings were collected at the rate of 50 samples per second.

4.1.2 Preprocessing. For all datasets, we first down-sample to 20
Hz2 and slice the continuous IMU data into the window with a
length of 120 measurements. There is no overlapping between any
two windows. Each sample is labeled with an activity type, and
device placement (if applicable). The key attributes of the four
datasets are summarized in Table 1.

We randomly divide each dataset into training (80%), validation
(10%), and test (10%) sets. The training set is further divided into 1%
as labeled set and 99% as unlabeled set. The ratio of the number of
samples in labeled set to that in training set is called the labeling
rate in our paper, which equals to 1% unless otherwise specified.
In self-supervised training phase, the training set is used to jointly
train the LIMU-BERT and the decoder, while the validation set is
used to select the models. In the supervised training phase, the
task-specific classifiers are trained with the labeled set and selected
2High sampling rates lengthen the input sequence and thus increase the model com-
plexities, which may cause severe over-fitting. Therefore, the sampling rate is set to
20 Hz for the balancing the performance and efficiency.

Table 1: Datasets summary. (A=accelerometer, G=gyroscope,
M=magnetometer)

Dataset Sensor Activity User Placement Sample
HHAR A,G 6 9 - 9166
UCI A,G 6 30 - 2088
MotionSense A,G 6 24 - 4534
Shoaib A,G,M 7 10 5 10500

by the validation set. In our experiment setting, only 1% of labeled
samples are utilized to train task-specific classifiers, which is mimic
the practical application scenario where only limited labels are
available. The trained classifiers are finally evaluated on the test
set. When dividing the training set, we ensure that each class has
the same amount of labeled samples. The class imbalance problem
[11] is not considered in our paper. We argue that the its impact
to the task-specific classifiers is limited if only a small amount of
labeled data is required.

4.1.3 Models in comparison. Our approach is evaluated by com-
paring it with other alternative models, which are based on state-
of-the-art machine models in HAR.
LIMU-GRU. LIMU-GRU is a classification model implemented
based on our framework. The input data are the representations
learned by LIMU-BERT. The classifier is constructed with GRU
introduced in Section 3.6.
DCNN [49]. It designs a deep CNN-based model to automate fea-
ture learning from the raw IMU inputs for the HAR problem, which
outperforms many traditional method, including support vector
machine (SVM) and deep belief network (DBN). To make DCNN
adaptive to our setting, we slightly adjust the size of input and
output layers.
DeepSense [51]. Different from other models, DeepSense applies
Fourier Transform to the raw IMU data and feeds the frequency
domain features (i.e., magnitude and phase pairs) to the neural
network. It adopts a deep learning structure to fuse data from mul-
tiple sensors and accordingly extract temporal features. Since the
input setting in DeepSense is different from ours, we implement the
CNNs in DeepSense with minor adaptions (e.g., smaller kernels).
TPN [33]. To the best of our knowledge, TPN is the only study
that is able to learn general features from unlabeled data before
training task-specific models. A multi-task temporal CNN is trained
to recognize several transformations applied on the input data. The
temporal CNN is then transferred to the HAR classification model.
We make TPN adapt to the window size by reducing the kernel
sizes in the CNN layers.
R-GRU. To show the effectiveness of representations learned by
LIMU-BERT, we implement a baseline model that directly applies
the GRU classifier on the raw IMU data.

4.1.4 Implementation. LIMU-BERT and other baseline models are
implemented with Python and PyTorch [28]. They are trained in
a server equipped with 4 NVIDIA GEFORE 2080Ti GPUs, 128 GB
memory, and an Intel(R) Core(TM) i9-9820X 3.30GHz CPU. The
learning rate and batch size in both self-supervised and supervised
training phases are the same, which are 0.001 and 128, respectively.
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Table 2: Performance comparison on HAR with 1% labeled data.

Dataset HHAR UCI MotionSense Shoaib Average

Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DCNN 0.760 0.736 0.649 0.625 0.721 0.637 0.715 0.718 0.711 0.679
DeepSense 0.715 0.688 0.576 0.544 0.722 0.650 0.682 0.683 0.674 0.641
R-GRU 0.849 0.832 0.760 0.741 0.846 0.806 0.785 0.787 0.810 0.792

TPN 0.250 0.151 0.208 0.068 0.084 0.026 0.163 0.040 0.176 0.071

LIMU-GRU 0.964 0.962 0.924 0.923 0.927 0.899 0.900 0.899 0.929 0.921
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Figure 5: Accuracy comparison on HAR at different labeling rates.

To ensure a fair evaluation, all classifiers and baseline models are
trained with the same training hyper-parameters and labeled set
in the supervised training process. LIMU-BERT and TPN are pre-
trained with the unlabeled samples in the training set for 3,200
epochs. The GRU classifier and baseline models are trained with un-
labeled samples in the label set for 700 epochs. All the models utilize
the same datasets for self-supervised training or supervised train-
ing, validation, and testing. The default input data are accelerometer
and gyroscope readings. The sequence length of classifiers 𝐿𝑐 is 20
unless otherwise specified.

4.1.5 Application and metrics. We compare all models on two appli-
cations: Human Activity Recognition (HAR) and Device Placement
Classification (DPC). In the HAR task, models are trained to recog-
nize human activities (e.g. recognize standing, sitting,lying, walking,
walking downstairs, or walking upstairs on the HHAR dataset) with
IMU data. Similarly, models process IMU data and determine the
placement of the device (i.e., determine right pocket, left pocket, belt,
upper arm, or wrist on the Shoaib dataset) in the DPC task. As both
two applications are classification tasks, we adopt accuracy and
macro F-score for performance comparison.

4.2 Evaluation of Human Activity Recognition
4.2.1 Overall performances. Table 2 gives the comparative perfor-
mances of LIMU-GRU and other baseline models in HAR applica-
tion. The labeling rate is 0.01, i.e., all models only utilize 1% labeled
samples of training set. According to the results, LIMU-GRU out-
performs other baseline models by a large margin (at least 10%)
in all cases, which demonstrates the effectiveness of LIMU-BERT.
In general, LIMU-GRU achieves nearly 0.90 accuracy and F1-score
with all datasets. The performances of DCNN and DeepSense are
even worse than R-GRU, a simpler model. We suspect that may be

due to over-fitting issue when only limited labeled samples can be
leveraged. The performances of TPN is the worst, probably due
to the reason that TPN is not designed to handle multi-modality
data with readings from a variety of IMU sensors. TPN classifier
does not converge correctly, though it has a self-supervised phase
for the temporal CNN. In addition, the performance gap between
R-GRU and LIMU-GRU clearly suggests that the representations
learned by LIMU-BERT are effective (over 10% improvement on
accuracy and F1-score).

In summary, the performance gain of LIMU-GRU is significant,
thanks to the effective and generalizable features extracted by LIMU-
BERT. The results also show that 20Hz sampling rate of IMU sensors
already delivers high performance for the HAR task.

4.2.2 Varying labeling rate. In this experiment, we investigate the
performances of DCNN, DeepSense, R-GRU and LIMU-GRU at
different labeling rates, varying from 0.2% to 10%. Figure 5 depicts
the comparison results with all datasets. Most models are able to
achieve higher accuracies as the labeling rate increases. The results
show that LIMU-GRU consistently outperforms the baseline in
all cases. The performance gaps between LIMU-GRU and other
models are higher when the labeling rate is smaller. For examples,
LIMU-GRU obtains accuracies of 0.863, 0.875, and 0.855 at labeling
rate 0.2% on HHAR, UCI, and MotionSense dataset, respectively.
All other models, however, only achieve accuracies below 0.5. The
result suggests that LIMU-BERT is able to effectively learn general
representations from the unlabeled data, and the down-stream GRU
classifier achieves higher accuracy with learned representations.
The performance gain is significant especially when the labeled
data samples are fewer.
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Figure 6: Accuracy comparison on HAR with different sequence lengths (SL).

Table 3: Performance comparison on DPC.

Labeling rate 0.2% 0.5% 1% 2% 5% 10% Average

Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DCNN 0.486 0.484 0.561 0.564 0.657 0.652 0.781 0.778 0.842 0.839 0.900 0.897 0.705 0.702
DeepSense 0.463 0.457 0.537 0.529 0.600 0.594 0.669 0.663 0.765 0.761 0.819 0.815 0.642 0.637
R-GRU 0.613 0.589 0.719 0.716 0.832 0.830 0.901 0.901 0.941 0.941 0.964 0.964 0.828 0.824

TPN 0.321 0.184 0.421 0.319 0.404 0.266 0.488 0.391 0.336 0.216 0.391 0.257 0.394 0.272

LIMU-GRU 0.753 0.746 0.886 0.885 0.920 0.921 0.948 0.949 0.969 0.970 0.984 0.984 0.910 0.909

4.2.3 Varying sequence length. Since the representations are learned
from longer IMU sequences, there is a question about whether the
performance improvement of LIMU-GRU comes from the use of
longer sequences in the self-supervised training phase rather than
the representations learned from the unlabeled data. To investigate
this, we conduct experiments by varying IMU sequence length from
120 to 20. For DCNN, we change the number of neural unit in the
first fully-connected layer and make it able to work with different
sequence lengths. Other models are naturally adaptive to different
sequence lengths. Figure 6 plots the performances of all models,
where DeepSense is abbreviated as DS. We find that the model per-
formances are not positively related to the sequence length. In all
sequence length settings, LIMU-BERT performs the best. There are
several reasons to explain the result: First, longer IMU sequences
would increase the model complexity (e.g., DCNN), possibly leading
to over-fitting and may not necessarily yield higher accuracy. Sec-
ond, when the labeled IMU measurements are limited, the increase
of sequence length corresponds to fewer labeled samples, which
may lead to severer label scarcity issue in the supervised training
process. Overall, longer IMU sample sequence do not always lead
to higher performance for the tested models.

4.3 Evaluation of Device Placement
Classification

In this evaluation, we quantitatively analyze the performance of
LIMU-GRU in the DPC task. We change labeling rate from 0.2% to
10% and compare LIMU-GRU with other models in Table 3. The
experiments are conducted on the Shoaib dataset as only Shoaib has
ground truths for device placement. Similar to case of HAR, LIMU-
GRU outperforms all baseline models in all cases on the DPC. The
performance margins of accuracies and F1-scores are significant,

especially when labeling rate is small. The average accuracy and
F1-score of LIMU-GRU across all test cases are 0.910 and 0.909,
respectively. As for comparisons, the accuracies and F1-score of all
other models are lower than 0.828. The performance gain of LIMU-
BERT over the rest models increases from 2% for 10% labeling rate
all theway to 14%when the labeling rate reduces to 0.2%. The results
show that the representations learned by LIMU-BERT significantly
benefit the DPC application as well.

4.4 Micro-benchmark
We conduct micro-benchmark experiments to inspect LIMU-BERT
and evaluate its sensitivity to various system settings.

4.4.1 Representation visualization. To understand the effective-
ness of the representations learned by LIMU-BERT, we adopt t-
distributed Stochastic Neighbor Embedding (t-SNE) [42] to visu-
alize the learned high-dimensional representations in 2D space.
For each dataset, 1000 samples are selected randomly and their
relevances are depicted in Figure 7. First four sub-figures depict
the LIMU-BERT outputs of the four datasets on the HAR task, and
Figure 7(e) depicts that on the DPC task. The clusters show the high
correlations among the learned representations in all datasets. It is
obvious that samples belonging to the same activity class exhibit
high clustering effect. An interesting finding is that representations
of dynamic activities (walking, jogging, upstairs, downstairs, and
etc.) are likely to be close, which is in line with our understand-
ing that those activities require many motions and thus introduce
fluctuations on IMU sensor data. The representations in the Shoaib
dataset are less concentrated compared with other datasets for ac-
tivity labels. We believe it is mainly because Shoaib dataset contain
device placement diversity and the learned representations contains
general information about both activity and device placement.
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Figure 7: Representation visualization with t-SNE.

Table 4: Performance comparison of classifiers.

Application HAR HAR HAR HAR DPC Average

Dataset HHAR UCI MotionSense Shoaib Shoaib -

Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LIMU-CNN 0.952 0.946 0.883 0.882 0.895 0.858 0.849 0.850 0.884 0.884 0.893 0.884
LIMU-ATTN 0.928 0.923 0.915 0.913 0.909 0.874 0.809 0.810 0.812 0.811 0.875 0.866
LIMU-LSTM 0.953 0.949 0.913 0.915 0.913 0.880 0.890 0.891 0.921 0.921 0.918 0.911
LIMU-GRU 0.964 0.962 0.924 0.923 0.927 0.899 0.900 0.899 0.920 0.921 0.927 0.921

4.4.2 Varying classifier. As we explained in Section 3.6, other than
GRU, other commonly used neural network components can also
be adopted following LIMU-BERT for task-classifier design. We
investigate how 2D-CNN [18], Multi-head Attention [43], and Long
Short-term Memory (LSTM) [10] as alternatives perform with the
representations generated by LIMU-BERT. The detailed designs of
them are provided in Section 3.6. The settings of LSTM are identical
to those of GRU. The labeling rate and sequence length are 1% and
20, respectively. Table 4 compares the performances of the four
varieties of classifiers on the four datasets and two applications.
The GRU gives the highest performance, and we find that the other
alternatives also achieve reasonably good performance. The results
suggest that representations produced by LIMU-BERT can be bene-
ficial to many neural network models for classification tasks. Their
performances are higher than all previously proposed baseline mod-
els as shown in Table 2, which also justifies the reliability of learned
representations.

4.4.3 Varying sensors. We examine how LIMU-BERT performs
on different input sensor combinations. We try to feed only ac-
celerometer readings, both accelerometer and gyroscope readings,
and all IMU sensors (including magnetometer) into LIMU-BERT.
The performances of corresponding LIMU-GRU are depicted in
Figure 8, where A, G, and M denote the inclusion of accelerometer,
gyroscope, and magnetometer, respectively. The F1-scores of all
sensor combinations indicate that the performance gain introduced
by extra gyroscope readings is significant, especially in the UCI
dataset. The reason is that gyroscope sensor can provide more in-
formation about the motions of the mobile device. On the other
hand, magnetometer readings do not bring much benefit in our tar-
get applications. The possible reasons include it is not as sensitive
to device motions as other two sensors are and it may easily be
affected by the environment. Magnetometer readings, nevertheless
does do not degrade the performances of LIMU-GRU. In general,

the results suggest that LIMU-BERT is able to work well on multiple
IMU sensors.

4.4.4 Varying normalization method. We evaluate the effective-
ness of our normalization method as proposed in Section 3.2. We
compare with (1) feeding the raw IMU data into LIMU-BERT di-
rectly, as well as (2) adopting mean-variance method to normalize
raw data. Figure 9 depicts their performances, where the results
are grouped under different datasets and applications. We find
that feeding raw data can achieve similar accuracies as those of
our normalization method in the MotionSense and Shoaib dataset.
However, its accuracy degrades significantly in other cases, such as
in the HHAR-HAR and UCI-HAR, which suggests that the perfor-
mances of raw data are not stable. For mean-variance normalization
method, the classifiers cannot extract effective features from learned
representations and thus accuracies are very low, which is in line
with our hypothesis that any normalization method that destructs
the distribution information of raw IMU data may lead to perfor-
mance degradation. In contrast, the normalization method adopted
in LIMU-BERT outperforms using raw data by 5.78% on average
and achieves the highest overall accuracy. The result indicates the
improved stability of LIMU-BERT normalization.

4.4.5 Varying masking approach. Figure 10 displays the compara-
tive performances of different masking approaches including the
approach adopted in original BERT (referred to as single mask in
this evaluation) and span masking with different probability of suc-
cess 𝑝 as specified in Equation 4. The 𝑝 in Equation 4 determines
the expected value of the geometric distribution, which affects the
overall masked subsequence length. The span mask with smaller
𝑝 is more likely to mask longer subsequences. The results show
that span masking obtains higher average accuracy than the single
masking, which suggests that masking longer subsequence may
be more effective for IMU representation learning. The setting of
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Table 5: Accuracies across datasets.

Source
Dataset

Target Dataset and Application

HHAR
HAR

UCI
HAR

Motion
HAR

Shoaib
HAR

Shoaib
DPC

Avg.
-

HHAR 0.964 0.862 0.872 0.845 0.832 0.875
UCI 0.865 0.924 0.879 0.843 0.820 0.866

Motion 0.883 0.879 0.927 0.847 0.852 0.878
Shoaib 0.879 0.847 0.869 0.900 0.925 0.884

Merged 0.905 0.932 0.901 0.895 0.883 0.903

𝑝 = 0.2 achieves the best overall performances and we adopt it in
LIMU-BERT.

4.4.6 Varying representation dimension. We study the impact of
representation dimension 𝐻𝑑𝑖𝑚 on the final performance. Different
values are applied and their F1-scores are illustrated in Figure 11.
In general, it is clear that the F1-scores increase when we increase
𝐻𝑑𝑖𝑚 under 72. But F1-scores decrease if𝐻𝑑𝑖𝑚 increases to 144. This
is because𝐻𝑑𝑖𝑚 is highly related to the complexities of LIMU-BERT
and the GRU classifier. Larger representation dimension improves
the goodness of fitting but may cause over-fitting, which is a typical
trade-off. It also affects the efficiency of our models on mobile
devices. We set 𝐻𝑑𝑖𝑚 to 72, which achieves best performances in
the series of experiments. Due to the characteristics of IMU features,
the dimensions here are much smaller than those (e.g., 1024) in the
original BERT, which significantly reduces the model size.

4.4.7 Varying dataset. We examine how LIMU-BERT performs
across different datasets, e.g., when the LIMU-BERT trained on the
HHAR dataset is applied on the MotionSense dataset (abbreviated
as Motion). We also create a merged dataset by combining the un-
labeled data in the four datasets. A LIMU-BERT is trained on the
merged dataset and then tested on each of the four datasets. Table
5 shows that the LIMU-BERT trained on any dataset achieves aver-
age accuracy higher than 0.850, which suggests that the features
generated by LIMU-BERT are generalizable and can be transferred
to varied datasets. The performances in the cross-dataset cases de-
grade due to the dataset diversity (i.e., user, device, and behavior
diversity). The LIMU-BERT trained on the merged dataset achieves
the best performance, which suggests that LIMU-BERT can better
handle dataset diversity and extract general features when trained

Table 6: Efficiency comparison.

Model Parameters Size Train Time Infer. Time

DCNN 17 K 77 KB 4 ms 6 ms
DeepSense 13 K 73 KB 8 ms 6 ms
TPN 105 K 501 KB 38+2 ms 6 ms
R-GRU 5 K 24 KB 4 ms 18 ms

LIMU-BERT* 189 K 766 KB 36 ms 18 ms
LIMU-BERT 62 K 255 KB 27 ms 14 ms
LIMU-GRU 9 K 39 KB 6 ms 18 ms

on more extensive unlabeled data. This further shows the good ca-
pability of LIMU-BERT in unleashing the potential of the abundant
unlabeled data in IMU sensing applications.

4.4.8 Computation overhead. Table 6 compares the models in our
framework with baseline models in terms of the number of parame-
ters, model size, training time and inference time. The LIMU-BERT
aims at learning a general representation from unlabeled data ac-
cumulated over time, and can thus be continuously trained in the
cloud while the mobile devices only run the task-specific models
for inference. Therefore, the training is performed on the the server
(see in Section 4.1.4) and the training time estimates the time used
to train one mini-batch (128 samples). The inference time is the
execution time for inferring one sample (120 IMU readings) on a
Samsung Galaxy S8 (SM-G9500 equipped with Octa-core CPU and
4 GB RAM). Each experiment is repeated 1000 times to obtain the
average time. The input data are randomly sampled from the UCI
dataset. The training time of TPN denotes the pre-training and su-
pervised training time. LIMU-BERT* represents the the LIMU-BERT
without cross-layer parameter sharing and the decoder. The total
number of parameters in LIMU-BERT (𝐻𝑑𝑖𝑚 = 72) is about 62,000,
which is much smaller than that of the original BERT. The results
indicate that cross-layer parameter sharing mechanism does help
reduce the model size and improve the overall efficiency. On the
other hand, GRU classifier has only about 9,000 parameters, which
is very lightweight. Although LIMU-BERT generally incurs slightly
more inference time than some other approaches, the overhead is
comparable and affordable for most COTS smartphones.
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5 RELATEDWORK
Applying deep learning techniques with IMU sensors in mobile
devices (i.e., smartphones, smartwatches, earphones, and etc.) facil-
itates many ubiquitous applications, such as human activity recog-
nition [13, 23, 33, 51], human-computer interaction [24, 58], user
authentication [2, 31, 48, 51], indoor and tracking [14, 41], and etc.
Compared with vision-based [30], wireless-based [12, 21, 46, 52,
54, 57] systems, mobile-based [13, 23, 33, 47, 51] methods are more
ubiquitous and achieve promising performances.

However, most models [13, 23, 41, 51, 52] are trained with a large
amount of labeled samples and require great manual labeling efforts,
which may not be practical in reality. MetaSense [8] employs meta-
learning to make a base model adaptive to the target user domain
with few labeled samples. But it still needs large labeled dataset
(leave-one-user-out among ten users) to train a base model. EI
[12] proposes a novel feature extraction framework, which extracts
environment or subject independent features from both labeled and
unlabeled data. Nevertheless, it needs multiple types of labels (i.e.,
activity labels and environment or subject labels), which imposes
stronger labeling requirements. It is also challenging to balance
different losses in the adversarial training process in [12]. Therefore,
there exists a gap in designing a label-free representation learning
method for IMU sensing applications.

As an emerging line of research topic, self-supervised learn-
ing approaches have been widely studied to reduce dependence
on labeled data in deep learning. The self-supervised learning ap-
proaches do not use human-annotated datasets and automatically
learn representations (e.g., visual features) from the target data.
Many surrogate tasks [6, 15, 19, 20, 27, 29] have been proposed
to learn spatial and temporal relations from images, videos, and
text. These self-supervised learning paradigms have proved that ex-
tracting high-level representations tremendously help down-stream
transfer and semi-supervised learning models. These approaches,
however, may not apply to IMU sensing applications due to the
multi-modality nature of IMU data and the constrained resources
of mobile devices in accommodating complicated models.

To the best of our knowledge, TPN [33] is the only work that
borrowed the idea of self-supervised learning and apply it to IMU
sensing. It extracts the accelerometer representations by jointly
learning to solve multiple self-supervised tasks. A temporal CNN
is trained to to recognize several transformations (e.g., scale or
rotate) applied on the raw data. In the supervised training phase,
the features learned by the temporal CNN are utilized for HAR
model. Nevertheless, TPN is designed to process only accelerometer
readings and is thus limited in fully unleash the potential the multi-
modality IMU sensors. According to our experiment result, the
performance of TPN is far below what LIMU-BERT achieves.

This paper explores the feasibility of self-supervised represen-
tations learning for the IMU data collected at mobile devices. Dif-
ferent from TPN, LIMU-BERT is able to handle multiple sensor
data thanks to its special design in normalization and fusion. LIMU-
BERT targets at two types of features (i.e., distributions of individual
measurements of IMU sensors and temporal relations in continuous
measurements) and learn them by adaptive MLM self-supervised
task. The learned representations significantly reduce the label
requirements of the down-stream classifiers.

6 DISCUSSION AND FUTUREWORK
Model transferability. As shown in Table 5, the performance of
LIMU-BERT slightly degrades when transferring across datasets.
One main reason is that the four datasets are collected with diverse
devices, placements, users, and environments. The diversities cause
the domain shifts among the datasets and affect the generalizability
of learned representations. However, the results in Table 5 also sug-
gest that LIMU-BERT is able to cope with those diversities when
the activity types of two datasets are similar. To mitigate the impact
of domain shifts and extract more general features, LIMU-BERT
might be further improved by techniques like denoised autoencoder
[44] or data augmentation [37] and we leave it as a future work.
Irrelevant event detection. Being another popular IMU sensing
application, the irrelevant or anomaly detection task has been re-
cently concerned [22, 45]. As a typical generative self-supervised
model, LIMU-BERT is sensitive to the rare samples and may fail to
extract effective features from them. Therefore, the performance
of LIMU-BERT in detecting irrelevant or anomaly events depends
on the frequency of occurrence of the related events during the
sensing process.
User privacy. In most IMU sensing scenarios, the sensor data are
collected on mobile devices and supposed to be uploaded to the
cloud for the self-supervised learning process, which may cause
privacy issue. Emerging training frameworks like federated learn-
ing [17, 26] may be introduced in the training of LIMU-BERT for
protecting the user privacy. An alternative method is to further
reduce the size of the models so that we can directly train them on
mobile phones without the need of data transmission.

Other future works include the investigation of how the rep-
resentations learned by LIMU-BERT may facilitate other mobile
applications, e.g., indoor localization [39] or device orientation
estimation [59].

7 CONCLUSION
In this paper, we present a lite BERT-like representation learn-
ing model for mobile IMU sensor data, which makes use of unla-
beled data and accordingly extracts generalizable features instead
of task-specific features. Extensive experimental evaluation demon-
strates the learned representations by LIMU-BERT can boost the
performances of down-streammodels significantly with few labeled
samples. With LIMU-BERT, the labeling efforts in real IMU-based
sensing applications can be greatly reduced.

ACKNOWLEDGMENTS
We sincerely thank the anonymous shepherd and reviewers for
their insightful comments and suggestions. This research is sup-
ported by the National Research Foundation, Singapore under its
Industry Alignment Fund – Pre-positioning (IAF-PP) Funding Ini-
tiative, Alibaba Group through Alibaba Innovative Research (AIR)
Program and Alibaba-NTU Singapore Joint Research Institute (JRI),
and NTU CoE SUG. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thors and do not reflect the views of National Research Foundation,
Singapore, Alibaba Group, and NTU.



LIMU-BERT SenSys’21, November 15–17, 2021, Coimbra, Portugal

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-

tion. arXiv:1607.06450 [stat.ML]
[2] Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang. 2013.

Silentsense: silent user identification via touch and movement behavioral biomet-
rics. In Proceedings of the 19th annual international conference on Mobile computing
& networking. 187–190.

[3] Wenqiang Chen, Lin Chen, Yandao Huang, Xinyu Zhang, Lu Wang, Rukhsana
Ruby, and Kaishun Wu. 2019. Taprint: Secure text input for commodity smart
wristbands. In The 25th Annual International Conference on Mobile Computing
and Networking. 1–16.

[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[5] Zhi-An Deng, Guofeng Wang, Ying Hu, and Di Wu. 2015. Heading estimation
for indoor pedestrian navigation using a smartphone in the pocket. Sensors 15, 9
(2015), 21518–21536.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. 2017.
Self-supervised video representation learning with odd-one-out networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
3636–3645.

[8] Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee. 2019. Metasense: few-
shot adaptation to untrained conditions in deep mobile sensing. In Proceedings of
the 17th Conference on Embedded Networked Sensor Systems. 110–123.

[9] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[11] Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A
systematic study. Intelligent data analysis 6, 5 (2002), 429–449.

[12] Wenjun Jiang, Chenglin Miao, Fenglong Ma, Shuochao Yao, Yaqing Wang, Ye
Yuan, Hongfei Xue, Chen Song, Xin Ma, Dimitrios Koutsonikolas, et al. 2018.
Towards environment independent device free human activity recognition. In
Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking. 289–304.

[13] Wenchao Jiang and Zhaozheng Yin. 2015. Human activity recognition using
wearable sensors by deep convolutional neural networks. In Proceedings of the
23rd ACM international conference on Multimedia. 1307–1310.

[14] Yonghang Jiang, Zhenjiang Li, and Jianping Wang. 2018. Ptrack: Enhancing the
applicability of pedestrian tracking with wearables. IEEE Transactions on Mobile
Computing 18, 2 (2018), 431–443.

[15] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and
Omer Levy. 2020. Spanbert: Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Computational Linguistics 8 (2020),
64–77.

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).
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